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1. SUMMARY

1.1. The Vision Machine

Much of our work during the past year has focused on building our Vision
Machine system. The Vision Machine is a testbed for our research on parallel
vision algorithms and their integration. The system consists of an input device
- a movable two camera Eye-Head system with six degrees of freedom - and
the 16K Connection Machine (CM-1). We have concentrated on implementing
and testing early vision algorithms, and on developing a new sophisticated
technique for their integration. The output of the integration stage will be
used for navigation and recognition tasks.

1.2. An Overview

From August 31, 1986 to August 31, 1987, we have been using the Connec-
tion Machine delivered on July 31, 1986 by Thinking Machines Corporation
(TMC). We have developed and tested a substantial body of vision software
on the machine. We have also nearly completed, well ahead of schedule, the
development of an integrated Vision Machine that includes several early vi-
sion algorithms, and the integration stage of middle vision. As outlined in
our original proposal, we have begun to explore parallel algorithms at the
higher level of recognition. We have also studied the performance of alterna-
tive, nonconventional architectures for navigation, and worked on the difficult
issue of alternative parallel languages for the Connection Machine, in addition
to *LISP and C*. The body of this report gives an overview of the results
of our research during the second twelve months of funding. Details can be
found in the attached publications.

.... mm~mml mum n nu umunun~nm~nl l mmm l mlnRn|mom
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2. ACHIEVEMENTS IN THE SECOND YEAR

We give below a brief overview of our main achievements.

2.1. The Vision Machine

The Vision Machine hardware consists of a "Eye-Head" system and a Con-
nection Machine (CM-1). The MIT Eye-Head system is a movable robot that
consists of two CCD cameras, two sets of two mirrors each, and a "head"
that can be moved with two degrees of freedom by step-motors. Both the
"head" and the mirrors (driven by galvanometers) are computer controlled.
The system can effectively look around the ninth floor of the MIT Artificial
Intelligence Laboratory building at Technology Square, and grab stereo im-
ages. In the very near future, we will add zoom, auto-focusing and color
capabilities to this input device.

The Connection Machine [Hillis, 1985] is a fine-grained parallel computing
machine having up to 64K processors, and operating under a single instruc-
tion stream broadcast to all processors. The MIT Connection Machine is a
16K processor CM-1. Each processor is a 1-bit serial processor, with 4K bits
of memory. There are two modes of communication among the processors. In
the first mode, the processors can be thought of as connected by a mesh of
wires into an m x m grid network (the NEWS network, so-named for the four
cardinal directions), allowing rapid direct communication between neighbor-
ing processors; m is variable. The second mode, the router, allows messages
to be sent from any processor to any other processor in the machine. The
processors in the Connection Machine can be envisioned as the vertices of
a 16-dimensional hypercube. Each processor in the Connection Machine is
identified by a unique integer, its hypercube address. Messages pass along
the edges of the hypercube from source processors to destination processors.
Besides local operations in the processors, the Connection Machine can return
to the host machine the result of various operations on a field in all processors;
it can return the global maximum, minimum, sum, logical AND, and logical
OR of the field.

The core of the Vision Machine system is software on the CM-1 writ-
ten mainly in *LISP and PARIS, which are additions to Common-Lisp that
provide access to the Connection Machine. Since the Connection Machine is
a Single-Instruction Multiple-Data (SIMD) machine, there is an instruction
stream broadcast to the Connection Machine from the host, in our case a Sym-
bolics Lisp Machine. The form of programming suitable for the Connection



5

Machine, due to its SIMD nature, is "data-level parallelism", which focuses
on the movement and interaction of data. Each processor in the Connection
Machine is associated with a data element. All selected data elements in a
SIMD machine are manipulated in the same fashion. Because of these fea-
tures of the Connection Machine, it is natural to map pixels in the images we
analyze to processors, the data elements in the Connection Machine.

The Connection Machine architecture provides some useful primitive op-
erations for early, middle and high-level vision. It is distinguished from mesh
computers by its capability for general non-local communication among the
processors, and from pyramid machines by its uniform bandwidth communi-
cation among all processors.

Our integration effort has to this point concentrated on integrating data
produced by individual modules into a coherent description of the scene,
specifically at boundaries. The memory limitations of our CM-1 force us
to run each module serially, since it is not possible to represent simultane-
ously in the CN! 1 all of the many structures involved in the texture, color,
motion and stereo modules. With a CM-2, we should be able to couple these
modules more tightly.

2.2. Early Yision Algorithms

2.2.1. Edge Detection

Edge detection is an important first step in many low-level vision algorithms.
It generates a concise, compact description of the structure of the image,
suitable for manipulation in higher-level interpretation tasks. We have imple-
mented on the Connection Machine both the Marr-Hildreth and the Canny
edge detection schemes.

A fundamental operation in vision processing is filtering the input image
to remove noise and to select an appropriate spatial scale. Typically, filtering
is accomplished by convolution with a filter of bounded spatial extent, often
a Gaussian. We have implemented a variety of methods for computing the
Gaussian convolution of an image. Primarily, we use the binomial approxi-
mation to the one-dimensional Gaussian implemented by repeated summing,
using a kernel of 1/4, 1/2,1/4. To smooth the image with a filter approximat-
ing a Gaussian with standard deviation a requires 20 2 - 1 convolutions with
this kernel. Each convolution needs two additions and two NEWS accesses.
This method can also be used to generate an approximation to convolution
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with a two-dimensional Gaussian. Convolution with a Gaussian filter can
also be approximated by iterated convolution with a uniform (boxcar) filter
of width N and height 1/N. To approximate a Gaussian with standard devia-
tion a, 12a 2 - 1/N 2 - 1 iterations are required. This approximation is useful
when a is large. We compute 7 2 * G(a) by convolving with G(a), retaining
extra precision, and then filtering with the discrete Laplacian.

To detect zero-crossings in the Marr-Hildreth method, each processor
need only examine the sign bits of neighboring processors, using NEWS ac-
cesses.

Canny Edge Detection

The Canny edge detector is based on directional derivatives, so it has im-
proved localization. Implementing the Canny edge detector on the Connec-
tion Machine involves implementing Gaussian filtering, computing directional
derivatives, non-maximum suppression, and thresholding with hysteresis. The
algorithm has been implemented on the Connection Machine, and is routinely
used in real-time processing tasks as an integral part of the Vision Machine
system.

Gaussian filtering and computing directional derivatives are local opera-
tions as described above. In non-maximum suppression, gradient magnitudes
are interpolated along lines in gradient directions. Then those pixels are se-
lected for which the gradient magnitude is a local maximum. Thresholding
with hysteresis estimates the distribution of gradient magnitudes in the image,
and chooscs a low threshold, low, below which all points are considered noise.
Then a high threshold, high, is computed; pixels with gradient magnitudes
above high are automatically marked as edge elements. Any pixels above low
threshold but below high become edge elements only if they can be connected
to a selected pixel above high by a set of selected pixels (local maxima), above
low. This requires propagating information along curves.

Histograms

Estimating the gradient magnitude distribution is performed by computing
its histogram. There are several ways this can be implemented on the Con-
nection Machine. Gradient magnitudes can be quantized for the histogram
bucket size. Sorting these values reconfigures the data: ... k, k, k, k, k + 1, k +
1, k + 1 .... Each processor determines whether its left neighbor is less than
itself. Each processor for which this holds sends its cube address to location
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H, in the histogram table, resulting in a cumulative frequency distribution
table, easily converted to a histogram. Computing a histogram in m buckets
by counting involves stepping from 0 < i < m, selecting processors where
intensity = i, and counting the number of selected processors (Hi), using m
global counting operations. When m is less than 64, this can be more effi-
cient than sorting. Finally, when only one value in the distribution is needed,
for example, finding the k h percentile, the percentile can be found in a bi-
nary search, using O(log m) global counting operations. Computing a Hough
Transform is similar to computing a histogram. In this, we will be able to
take advantage of a priori information on the distribution of values to devise
a fast algorithm.

Propagation

In thresholding with hysteresis, the existence of a high value on a curve is
propagated along the curve, to enable any low pixels to become edge pixels.
Only pixels above low which survive non-maximum suppression are consid-
ered. Each pixel can, in constant time, find the neighboring pixels with which
it forms a connected line, using the NEWS network. All pixels above high are
marked as edge pixels. Currently, the program iterates, in each step marking
as edge pixels any low pixels adjacent to edge pixels, using NEWS connections.
When no pixels change state, the iteration terminates, taking a number of
steps proportional to the length m of the longest chain of low pixels which
eventually become edge pixels. Using doubling, propagating the edge property
changes this to O(log m). In practice, propagation in the NEWS network is
faster than using the asymptotically optimal doubling procedure.

2.2.2. Stereo

Binocular stereo is one of the most precise sources of depth information. For
several months we have been using a parallel implementation of a new stereo
algorithm on the Connection machine. This stereo algorithm is related to
schemes proposed by Marroquin [1983], Prazdny [1985], and especially Marr
and Poggio [1976]. These algorithms are feature based. We have also recently
explored an algorithm based on matching intensities directly. It is conceivable
that a similar scheme may complement a feature based algorithms to provide
a denser depth map.
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Parallel Stereo and the Forbidden Zone Constraint

A new simple but fast algorithm has been implemented in collaboration with
Thinking Machines Corporation on the Connection Machine [Drumheller and
Poggio, 1986]. In the past months it has been reimplemented and improved
by W. Gillett as an integral part of the Vision Machine system. Its features
include: a) the potential for combining different primitives, including color
information; b) the use of a new and stronger formulation of the uniqueness
constraint; and c) a disparity representation that maps efficiently into the CM
architecture. The algorithm consists of the following steps:

Compute features for matching

Compute potential matches

Determine the amount of local support for each potential match

Choose correct matches on the basis of local support and constraints on unique-
ness and ordering.

The algorithm does not require a particular type of matching feature.
Different types of features can be used, such as the sign of the convolution
with a difference of Gaussians. Let us assume that the images are perfectly
registered and that all epipolar lines are horizontal. We can represent the set
of potential matches in a one-dimensional stereo matching problem (i.e., for a
pair of epipolar lines) by the same diagram used by Marr and Poggio [1976].
This representation of the stereo problem is the starting point for mapping a
stereo algorithm into the CM.

Potential matches are allowed to occur between two zero-crossings of the
same sign. This implements the compatibility constraint [Marr and Poggio,
1976]. The first step toward distinguishing the correct matches from the false
ones is to apply the continuity constraint [Marr and Poggio, 1976]. This prin-
ciple states that since most surfaces in the real world are piecewise smooth,
potential matches should be selected that result in a piecewise smooth dis-
parity function. A straightforward way to measure how well each disparity
satisfies the smoothness condition is to convolve the three-dimensional region
of z-y-d-space contained by the field P with a three-dimensional kernel that
gathers support from smooth configurations of potential matches. There are
many different kernels, or support functions, which will do a good job on this
task. Marr and Poggio [1976] use a very simple support function (or "excita-
tory region") that is circular, uniformly weighted and flat, i.e., it occupies only
one level in the disparity dimension. Every potential match is surrounded by
an hourglass-shaped forbidden zone. Within the forbidden zone there must be



no more than one match unless the scene contains transparent or narrowly-
occluding objects. Examples of such special scenes include a pane of glass with
markings on both sides, or a vertical wire suspended in front of a textured wall.
These situations violate the ordering constraint (Yuille and Poggio, 1984]. If
we assume that the scene contains only opaque objects with no narrow occlu-
sions, then it makes sense to enforce uniqueness not only along lines of sight,
but along any line of sight in the forbidden zone. A correct match should be
the only match within its entire forbidden zone. The Marr-Poggio algorithm
and the winner-take-all algorithms mentioned earlier [Prazdny, 1985; Pollard,
Mayhew and Frisby, 1985; Marroquin, 19831 use only the left and right eye
lines of sight, which comprise a small subregion of the entire forbidden zone.
Notice that the forbidden zone property is reflexive: if a match lies within the
forbidden zone of another, the latter is in the forbidden zone of the first [see
Yuille and Poggio, 1985, in which transitivity is also proven].

The algorithm enforces uniqueness by suppressing all matches that lie
within the forbidden zone of the match that gathers maximum support from
the 3-D convolution operation. The process of non-maximum suppression
along lines of sight is called the winner-take-all approach. We have used
a stronger, more general version of the winner-take-all method. Instead of
applying non-maximum suppression along only the left and right eye lines of
sight, we apply it across the entire forbidden zone. In general, the use of the
entire forbidden zone in the winner-take-all step results in fewer matches than
when using just the left and right eye lines of sight. However, the number of
errors almost always decreases more than the number of matches, especially in
the occluded region. Therefore, the ratio of errors to matches decreases. This
supports the hypothesis that the entire forbidden zone could be exploited to
advantage for scenes known to contain only opaque objects with no narrow
occlusions.

W. Gillett has recently implemented a very simple statistical analysis of
the voting process (how close the winners are, and where ties occur) to obtain
some initial information about depth discontinuities during stereo matching,
rather than afterwards as in the MRF scheme. Preliminary experiments indi-
cate that the method is feasible.

The stereo algorithm runs on the Connection Machine system with good
results on natural scenes in times that are typically on the order of one second.
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2.2.3. Motion

A Parallel Constraint Algorithm for Optical Flow

J. Little, H. Biilthoff and T. Poggio have developed a new, fast parallel algo-
rithm for computing optical flow. The algorithm is based on a new regular-
ization method that we call the "constraint method". This method, based on
a theorem of Tikhonov, can enforce local constraints and lead directly to effi-
cient, parallel algorithms. The specific constraint exploited by our algorithm
can be shown to correspond, in its most general form, to 3-D rigid motion of
planar surfaces. Segmentation of the motion field can be obtained from the
optical flow field generated by the algorithm. An iterative scheme provides
fast approximate solutions and subsequently refines them. The algorithm has
been implemented on the CM, and is routinely used in real-time processing
tasks as an integral part of the Vision Machine system.

The algorithm generates an optical flow field, a vector field which approx-
imates the projected motion field. The procedure produces sparse or dense
output, depending on whether edge features or intensities are used. The algo-
rithm assumes that image displacements are small, within a range (±b, ±b).
In addition, it is assumed that the optical flow is locally constant in a small
region surrounding a point. This assumption is strictly only true for transla-
tional motion of 3-D planar surface patches parallel to the image plane. It is

a restrictive assumption which, however, may be a satisfactory local approxi-
mation in many cases. Let Et(x, y) and Et+at(x, y) represent transfornmations
of two discrete images separated by time interval At, such as filtered images
or a map of the intensity changes in the two images (more generally, they can

be maps containing a feature vector at each location (x, y) in the image).

We look for a discrete motion displacement v = (vi, vy) at each location
x, y in the image such that

IIEt(x,Y) - Et+At(x + vzlt,y + vy/It)JIp'tch i = min (1)

where the norm is a summation over a local neighborhood centered at each lo-
cation (x, y); I_(x, y) is assumed to be constant in the neighborhood. Equation
(1) implies that we should look at each (x, y) for v = (vi, v.) such that

p (A(X, - t+At(X + v At, Y + VyAt)) 2 dxdy (2)
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is minimized. Alternatively, one can maximize the negative of the integrated
result. Equation (2) represents the sum of the pointwise squared differences
between a patch in the first image centered around the location (x, y) and a
patch in the second image centered around the location (x + v, At, y + vyAt).

This algorithm can be translated easily into the following description.
Consider a network of processors representing the result of the integrand in
equation (2). Assume for simplicity that this result is either 0 or 1 (this is the
case if Et and Et+At are binary feature maps). The processors hold the result
of differencing (taking the logical "exclusive or") of the right and left image
map for different values of (x, y) and v., vy. The next stage, corresponding
exactly to the integral operation over the patch, is for each processor to sum-
mate the total (2) in an (x, y) neighborhood at the same disparity. Each
processor thus collects a vote indicating support for a patch of surface ex-
isting at that displacement. The algorithm iterates over all displacements in
the range ±6, ±6, recording the values of the integral (2) for each displace-
ment. The last stage is to choose _(x, y) from among the displacements in
the allowed range that maximizes the integral. This is done by an operation
of "non-maximum suppression" across velocities from the finite allowed set:
at the given (z, y), the processor is found that has the maximum vote. The
corresponding IL(z, y) is the velocity of the surface patch found by the algo-
rithm. The actual implementation of this scheme can be simplified so that
the "non-maximum suppression" occurs during iteration over displacements,
so that no actual table of summed differences over displacements need be
constructed. In practice, this formalism has been shown to be effective both
for synthetic and natural images using many image transformations before
comparison, including edge detectors (both zero-crossings of the Laplacian of
Gaussian and Canny's method) which generate sparse results along intensity
edges, and direct use of intensities or the sign of the Laplacian of Gaussian,
which generate dense results.

2.2.4. Texture

Texture computations, specifically, determining texture boundaries, is an im-
portant component of the Vision Machine. Such boundaries provide yet
another cue to determine object boundaries, since the projection of object
boundaries often coincides with texture changes. Voorhees [1987] has de-
scribed several schemes for reliably determining texture boundaries in images.
One simple scheme first performs filtering with the Laplacian of Gaussian,
then thresholds the filter image at some non-zero value, yielding blobs which
characterize the textural elements in the textured regions. To compute the
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density of the blobs, or the amount of area locally covered by the blobs, it is
sufficient to sum locally the number of pixels which are in the blobs. This gives
a useful discriminator which can identify some textures. This algorithm has a
particularly simple parallel implementation on the Connection Machine, since
there exist routines, relying on the scan capability of the Connection Machine,
which can rapidly compute such local sums everywhere in an image. These
computations are prohibitively expensive on a serial computer. Further en-
hancements of these texture discriminators involve orientation selectivity and
thinning operations on the blobs derived above. We are actively working on
these developments: they also have simple implementations on the Connec-
tion Machine. Other textural discrimination methods summate, for example,
the energy in the image filtered by the Laplacian of Gaussian. This fits into
the framework, and appears to be useful in some cases.

2.3. The MRF Integration Scheme

Integration of several vision modules is likely to be one of the main keys to
the power and robustness of the human visual system. The problem of inte-
grating early vision cues is clearly the central problem in our Vision Machine
project. E. Gamble and T. Poggio have suggested that integration is best
performed at the location of discontinuities in early processes, such as dis-
continuities in depth, intensity, motion and texture. They have used coupled
Markov Random Field (MRF) models based on Bayesian estimation tech-
niques, to combine vision modalities with their discontinuities. They have
derived a scheme to integrate intensity edges with stereo depth and motion
field information, and show results on synthetic and natural images. The
use of intensity edges to integrate other visual cues and to help to discover
discontinuities emerges as a general and powerful principle. These models
generate algorithms that map naturally on parallel fine-grained architectures
such as the Connection Machine. Gamble and Poggio have chosen to use the
machinery of Markov Random Fields, initially suggested for image processing
by Geman and Geman [19841. Consider the prototypical problem of approx-
imating a surface gven sparse and noisy data (depth data) on a regular 2-D
lattice of sites. We first define the prior probability of the class of surfaces we
are interested in. The probability of a certain depth at any given site in the
lattice depends only upon neighboring sites (the Markov property). Because
of the Clifford-Hammersley theorem, the prior probability is guaranteed to
have the Gibbs form:
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P(f) - 42 (3)

where Z is a normalization constant, T is called temperature, and U(f) =

EiiC Uc(f) is an energy function that can be computed as the sum of local
contributions from each neighborhood. The sum of the potentials, UC(X), is
over the neighborhood's cliques. A clique is either a single lattice site or a
set of lattice sites such that any two sites belonging to the set are neighbors
of one another. Thus U(f) can be considered as the sum over the possible
configurations of each neighborhood [see Marroquin et.al., 1987; Gamble and

Poggio, 1987]. As a simple example, when the surfaces are expected to be
smooth, the prior probability can be giveli in terms of:

U (f) = (f, -- fj)2  (4)

where i and j are neighboring sites (belonging to the same clique).

If a model of the observation process is available (i.e., a model of the
noise), then one can write the conditional probability P(g/f) of the sparse
observation g for any given surface f. Bayes Theorem then allows one to write
the posterior distribution:

P(f/g) - (5)

In the simple earlier example, we have (for Gaussian noise):

U(f /g) = Zuf _ g,) 2 + (f, _ f
C

where -yi = 1 only where data are available. More complicated cases can be
handled in a similar manner [Gamble and Poggio, 1987].

The posterior distribution cannot be solved analytically, but sample dis-
tributions with the probability distribution of Equation (5) can be obtained
using Monte Carlo techniques such as the Metropolis algorithm. These algo-
rithms sample the space of possible surfaces according to the probability dis-
tribution P(f/g), which is determined by the prior knowledge of the allowed
class of surfaces, the model of noise, and the observed data. In our imple-
mentation, a highly parallel computer generates a sequence of surfaces from
which, for instance, the surface corresponding to the maximum of P(f/g) can

be found. This corresponds to finding the global minimum of U(f/g) (simu-
lated annealing is one of the possible techniques). Other criteria can be used:
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Marroquin [1985] has shown that the average surface f under the posterior

distribution is often a better estimate and can be obtained more efficiently by

simply finding the average value of f at each lattice site.

One of the main attractions of MRF is that the prior probability dis-

tribution can be made to embed more sophisticated assumptions about the

world. Geman and Geman [1984] introduced the idea of another process, the

line process, located on the dual lattice and representing explicitly the pres-

ence or absence of discontinuities that break the smoothness assumption. The

associated energy then becomes:

U - c(f) = (fi - f,2(1 - lj) + Vc(lj) (6)

where I is a binary line element between site i, j. Vc is a term that refleces the
fact that certain configurations of the line process are more likely than others
to occur. In our world, depth discontinuities are usually themselves continu-

ous and non-intersecting, and are rarely isolated joints. These properties of

physical discontinuities can be enforced locally by defining an appropriate set
of energy values Vc(l) for different configurations of the line process in the

neighborhood of the site.

It is obviously possible to extend the energy function to accommodate
the interaction of more processes and their discontinuities. In particular,

Gamble and Poggio have extended the energy function to couple several of
the early vision modules (depth, motion, texture and color) to intensity edges

in the image. This is a central point in our integration scheme: intensity

edges guide the computation of discontinuities in the other physical processes,
thereby coupling surface depth, surface orientation, motion, texture and color

each to the image intensity data and thus to each other. The reason for the

role of intensity edges is clear: changes in surface properties usually produce
large intensity gradients in the image. It is exactly for this reason that edge

detection is so important in both artificial and biological vision.

The coupling to intensity edges is done by adding to UC the term:

v(I,e) = 'YP(1 - ej)VC(I) (7)

with el = 1,0, depending on the presence or absence of an intensity edge
between site i,j. This term facilitates formation of discontinuities (that is,
l) at the locations of intensity edges.

These highly parallel algorithms map quite naturally onto an architecture
such as that of the Connection Machine, which consists of 16K simple 1-bit
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processors with local and gloLal conr,-',on capabilities. These algorithms
also map onto VLSI architectures of fully analog elements (we have success-
fully experimented with a version of Equation (7) in which 1 is a continuous
variable), mixed analog and digital components (such as directly suggested
by the previous equations), and purely digital processors (similar to a much
simplified and specialized Connection Machine).

2.4. Recognition

The problem of visual recognition is a many-faceted problem. We have worked
on several of these sub-problems. In particular, we summarize here some of
our initial work on the critical issues of how to segment an image in order
to initiate the recognition process and reduce its intrinsic combinatorics, and
how to use 2-D views to recognize 3-D objects.

2.4.1. Control Structures for Image Segmentation

J. Mahoney has begun to explore the problem of image segmentation from
a new perspective. The separation of figure from ground is still very much
a mystery, despite progress in "higher-level" matters such as interpretation
of three-dimensional structure and object recognition. Scrutiny of traditional
information processing decompositions of visual objects suggests that the root
of the difficulty is that segmentation is commonly assumed to be implemented
by a single module.

Mahoney argues that segmentation should instead be viewed as inher-
ently implicit in a number of other processes - i.e., the basic operations of
segmentation are selected and controlled by a number of other processes. He
proposed an alternative system architecture that does away with the notion
of segmentation as a module: figure-ground separation is seen as a complex
behavior exhibited by the system as a whole, and implemented by the in-
teraction between its modules. The modules of the system are elementary
processes of visual object perception: structure interpretation, classification
and application. The control of segmentation exerted by these processes has
a layered organization: interpretation determines how figures are extracted,
classification influences what figures are extracted, and application determines
where and when the figure separation takes place. This layered organization
implies that the various levels of control in separation may be studied some-
what independently.
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Our recent studies of the basic segmentation operations (curve tracing,
area coloring and indexing of salient locations) addressed the question of how
fine-grained parallelism of the sort provided by the Connection Machine may
be exploited in implementing these operations efficiently. Our study of the
proposed control structure for segmentation has begun to examine the ele-
mentary object perception processes - structure interpretation, classification
and application - and their interactions in detail. The Connection Machine
provides large-scale parallelism and general purpose routing which supports
efficient implementation of these processes.

2.4.2. Recognizing 3-D Objects from 2-D Views

We have implemented a system for recognizing objects in three-space from
a single two-dimensional view, such as a photograph. D. Huttenlocher and
S. Ullman have shown that three corresponding points are sufficient to re-
cover the three-dimensional position, orientation and scale of a model with
respect to an image. Thus our approach is to first align models with an
image, using triples of corresponding model and image points, and then to
compare the aligned models with the image. Unlike conventional tree search
and graph matching approaches to recognition, our method is well suited to
implementation on a massively parallel computer. Each alignment operation
is independent, and thus all the alignments between models and an image can
be solved in parallel.

Given a set of corresponding triples of model and image points, each
triple is used to compute the position, orientation, and scale of all models
containing that triple. This operation is performed in parallel for all triples.
The aligned models are then sorted to group together instances of the same
model. This takes time 0(k) for 2 k models. Finally, for each model, the
number of similar alignments is determined. Models for which there are two
or more independent alignments proposing a similar position, orientation and
scale are likely to actually be in the image, and should be further verified.

2.5. Other Vision Algorithms

We have explored the implementation on the Connection Machine of several
other algorithms, especially those with a more global flavor requiring extensive
use of the router network as opposed to the NEWS network.
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2.5.1. The Hough Transform

The Hough Transform is frequently used in image analysis to determine the
existence of straight lines in an image [Ballard and Brown, 1981]. The Gen-
eralized Hough Transform, similarly, is used to determine the parameters of
the position and orientation of a known object from an image. The Hough
Transform computes an accumulator array of values, in which the (0, p) entry
records the number of pixels lying on a line with parameters (0, p).

We parameterize lines by the normal angle 9, and the perpendicular dis-
tance from the origin p. The Hough Transform table will be stored in a matrix
of processors indexed by (9, p). We compute the Hough Transform in 0 sepa-
rate stages: each step computes the values for a particular angle 0(i). For each
angle, we broadcast cosO(i) and sinO(i). Each processor computes the scalar
product of its (x, y) address with the normal described by the broadcast pair.
Each processor then knows its (0, p). We count votes by sending a 1 from each
active pixel, summing at the destination processor. If we were simply to send
each vote to the table, there would be many collisions, with many messages
arriving at one processor, especially when (0, p) does in fact represent a line.
This can be slow when the number of collisions is large ( 64).

The routing hardware incurs little penalty for having up to 32 collisions
per destination. By randomizing the vote destinations, we can minimize the
number of collisions. For each 9, a pixel computes a location based on rho
and some random value, say, one computed at the start. For a fixed p, pixels
send their votes to a contiguous block of processors. Block sizes are calculated
to reduce the average number of collisions. The votes are summed when they
arrive, using a built-in capability of the router. Then the votes are tallied
as before, using a plus-scan operation, with segments. This will achieve the
same result with less overhead for computing addresses.

2.5.2. Matching 2-D Descriptions with 3-D Rock Models

More work has been done on the matcher discussed by W. Lim (in Proceedings
of the Image Understanding Workshop, 1987]. The matcher discussed in that
work uses 2-D descriptions, represented by a graph termed a model graph,
for recognizing landmarks which are objects in the rocks world. The 2-D
descriptions are derived from contour segments of the occluding contour of
the object. The matcher has been implemented on the Connection Machine

and has been tested on objects using manually created models for three real
objects. Synthetic models are also used by changing some of the attributes
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in the models for the real objects. The number of models in the data base
is approximately one-tenth the number of nodes in the CM, since each model
graph has about ten nodes as well as nodes mapped directly to processors.
The sizes of the CMs used are 8K and 16K. Due to insufficient memory in
the processors of the CM-1, implementation of the algorithm has been moved
to the CM-2, access to which Thinking Machines Corporation has provided
access.

The algorithm has been extended to match graphs that are more com-
plete, i.e., they contain 2-D descriptions derived from the internal structure
of the objects in addition to those obtained from the occluding contour. The
additional information includes the number of observed surface patches that
are not on the occluding contour, and possibly their surface types, e.g., flat or
curved. The algorithm first finds views of models that match the occluding
contour. From this set of views, it then looks for those that will also satisfy the
constraints imposed by the internal structure of the object in the scene. Work
is in progress on implementing the extension and testing the entire algorithm
using larger data bases, perhaps as large as will fit on the 64K CM-2.

2.6. Other Architectures

Most of our work has been focused on the Connection Machine, as we had
originally proposed, in order to establish the strength and utility of fine-
grained parallel architectures for vision within a navigation task. Thanks
to the in-house work by R. Brooks on the Mobile Robot, we have found it
interesting to contrast the fine-grained architecture of the CM-1 with the
subsumption architecture used by Brooks.

2.6.1. Architectures for Robot Navigation

We have examined system architectures for robotic navigation, in the context
of Brooks' layered systems for building robots. Brooks' subsumption archi-
tecture for robots provides an environment for building robots which allows
us to investigate several forms of exploratory behavior. In this system, we can
study various forms of spatial reasoning [Connell, 1986].

Recently, we have been exploring the application of Brooks' subsumption
architecture to robotic navigation. This architecture is attractive because a
complete system can be built and debugged incrementally. The architecture
also allows for a graceful degradation of performance if the robot encounters
unusual environments, or if some of the subsystems become inoperative.
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To test these ideas, we have investigated two types of exploratory behav-
ior cast in the subsumption framework [Brooks and Connell, 1986]. We are
also looking at how to build and maintain coarse maps of the environment
using similar techniques [Brooks and Connell, 1987]. Finally, we are probing
ways to extend the architecture to allow certain other types of spatial reason-
ing. In particular, we are interested in having the robot identify, pick up, and
then return certain types of objects [Connell, 1986].

The conclusion we have reached is that the two architectures can be com-
plementary for navigation. The simple subsumption architecture can underly
simple reflexive behaviors of the insect type. For more sophisticated tasks
involving planned visual navigation and recognition, however, the power of a
parallel supercomputer is barely sufficient, given the complexity of the tasks.

2.7. Parallel Languages

*LISP is a good language for early and middle vision. For more abstract

tasks, other languages would be desirable. It is questionable whether Thinking
Machines Corporation will be able to develop these more abstract languages,
since its main effort at present is focused on extending standard languages such
as C and even FORTRAN. We have been comparing three parallel versions
of Lisp that have been designed for the Connection Machine. These three
languages are *LISP, Paralation Lisp and CM-Lisp. *LISP is the current
parallel Lisp supported by Thinking Machines for the Connection Machine.
CM-Lisp is a language designed by D. Hillis and G. Steele for the Connection
Machine: it is a much higher level language. A simulator and a preliminary
compiler have been implemented at Thinking Machines. Paralation Lisp is a
language designed by G. Sabot, a graduate student at Harvard University. It
is similar to CM-Lisp, but is not at such a high level (its model is slightly closer
to the machine model). A simulator for the language has been implemented
by Sabot.

The purpose of comparing the three languages is to determine what the
best abstractions are for a parallel Lisp, and also to select the features of the
three languages that are most important. We feel that this knowledge will
help us to decide on implementation languages in the future, and will reduce
our coding effort.

The general approach taken is to code the same algorithms in the three
languages and to get a feeling of what helpful features are either present or
lacking in each language. We also try to get a feeling of which language most
clearly and concisely expresses the algorithms. In addition, we are studying
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compilers for the three languages so that we can determine how well a com-
piler can compile the algorithms into an efficient set of Connection Machine
instructions.

Some subgoals attained this summer include the implementation of sev-
eral algorithms in Paralation Lisp, for example:

A sorting algorithm (Quicksort)

A convez hull algorithm (Quickhull)

A line drawing algorithm

A K-D tree algorithm

An algorithm to determine the Shannon entropy of a sequence of symbols

An algorithm to build Quinlan Decision trees.

We have also sped up the simulator for Paralation Lisp by a factor of 100,
and implemented a preliminary compiler for Paralation Lisp. In addition, we
have implemented some algorithms in CM-Lisp including:

A sorting algorithm (Quicksort)

A line drawing algorithm

An algorithm to determine the Shannon entropy of a sequence of symbols.
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